chemistry: Impact of the Atomic Theory
Impact of the Atomic Theory
The assumption that compounds were of definite composition was implicit in 18th-century chemistry. J. L. Proust formally stated the law of constant proportions in 1797. C. L. Berthollet opposed this law, holding that composition depended on the method of preparation. The issue was resolved in favor of Proust by John Dalton's atomic theory (1808). The atomic theory goes back to the Greeks, but it did not prove fruitful in chemistry until Dalton ascribed relative weights to the atoms of chemical elements. Electrochemical theories of chemical combinations were developed by Humphry Davy and J. J. Berzelius. Davy discovered the alkali metals by passing an electric current through their molten oxides. Michael Faraday discovered that a definite quantity of charge must flow in order to deposit a given weight of material in solution. Amedeo Avogadro introduced the hypothesis that equal volumes of gases at the same pressure and temperature contain the same number of molecules.
William Prout suggested that as all elements seemed to have atomic weights that were multiples of the atomic weight of hydrogen, they could all be in some way different combinations of hydrogen atoms. This contributed to the concept of the periodic table of the elements, the culmination of a long effort to find regular, systematic properties among the elements. Periodic laws were put forward almost simultaneously and independently by J. L. Meyer in Germany and D. I. Mendeleev in Russia (1869). An early triumph of the new theory was the discovery of new elements that fit the empty spaces in the table. William Ramsay's discovery, in collaboration with Lord Rayleigh, of argon and other inert gases in the atmosphere extended the periodic table
Sections in this article:
- Introduction
- Organic Chemistry and the Modern Era
- Impact of the Atomic Theory
- Evolution of Modern Chemistry
- History of Chemistry
- Branches of Chemistry
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Chemistry: General