radar: Applications of Radar
Applications of Radar
The information secured by radar includes the position and velocity of the object with respect to the radar unit. In some advanced systems the shape of the object may also be determined. Commercial airliners are equipped with radar devices that warn of obstacles in or approaching their path and give accurate altitude readings. Planes can land in fog at airports equipped with radar-assisted ground-controlled approach (GCA) systems, in which the plane's flight is observed on radar screens while operators radio landing directions to the pilot. A ground-based radar system for guiding and landing aircraft by remote control was developed in 1960.
Radar is also used to measure distances and map geographical areas (shoran) and to navigate and fix positions at sea. Meteorologists use radar to monitor precipitation; it has become the primary tool for short-term weather forecasting and is also used to watch for severe weather such as thunderstorms and tornados. Radar can be used to study the planets and the solar ionosphere and to trace solar flares and other moving particles in outer space.
Various radar tracking and surveillance systems are used for scientific study and for defense. For the defense of North America the U.S. government developed (c.1959–63) a radar network known as the Ballistic Missile Early Warning System (BMEWS), with radar installations in Thule, Greenland; Clear, Alaska; and Yorkshire, England. A radar system known as Space Detention and Tracking System (SPADATS), operated collaboratively by the Canada and the United States, is used to track earth-orbiting artificial satellites.
See also stealth technology.
Sections in this article:
- Introduction
- Development of Radar
- Applications of Radar
- Principles of Radar
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Electrical Engineering