thermodynamics: The Second Law of Thermodynamics
The Second Law of Thermodynamics
A cyclic process is one that returns the system, but not the environment, to its original state. A closed cycle consisting of two isothermal and two adiabatic transformations is called a
In general it is impossible to perform a transformation whose only final result is to convert into useful work heat extracted from a source that is at the same temperature throughout. This statement is Lord Kelvin's version of the second law of thermodynamics. Another version of this law, formulated by R. J. E. Clausius, states that a transformation is impossible whose only final result is to transfer heat from a body at a given temperature to a body at higher temperature; in other words, the spontaneous flow of heat from hot to cold bodies is reversible only with the expenditure of mechanical or other nonthermal energy. These two versions of the second law of thermodynamics can be shown to be entirely equivalent.
The second law is expressed mathematically in terms of the concept of entropy. When a body absorbs an amount of heat
In all real physical processes entropy increases; in ideal reversible processes entropy remains constant. Thus, in the Carnot cycle, which is reversible, there is no change in the total entropy. The engine itself experiences no net change in entropy because it is returned to its original state at the end of the cycle. The entropy gained by the low temperature reservoir is equal to the entropy lost by the high temperature reservoir. However, according to the formula
Sections in this article:
- Introduction
- The Third Law of Thermodynamics
- The Second Law of Thermodynamics
- The First Law of Thermodynamics
- The Thermodynamic System and Its Environment
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Physics