brown dwarf
Although they should exist in large numbers, brown dwarfs are difficult to find using conventional astronomical techniques because they are dim compared with true stars. A number of brown dwarfs have been identified, the first in the Pleiades star cluster in 1995. The first X-ray-emitting brown dwarf was detected in Chamaeleon dark cloud number I in 1998. A year later, several so-called methane dwarfs were discovered; these are thought to be older brown dwarfs that have cooled sufficiently over billions of years so that large amounts of methane could form in their atmospheres. The closest brown dwarf to Earth, Epsilon Indi B, less than 12 light-years from the Sun, was discovered in 2003.
Brown dwarfs belong to the “T dwarf” category of objects straddling the domain between stars and giant planets. Because brown dwarfs are typically 10–80 times the mass of Jupiter, some of the large extrasolar bodies discovered orbiting stars may be brown dwarfs rather than giant Jupiterlike planets. Observations of 100 young brown dwarfs in the Orion Nebula in 2001 strongly supported the theory that they originate as failed stars; many of the brown dwarfs were surrounded by disks of dust and gas that conceivably could condense and conglomerate to create planets orbiting them. Brown dwarfs are believed to play an important role in the process of stellar evolution. They may be an important component of the dark matter that along with dark energy accounts for some 95% of the mass of the universe.
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General