Kepler's laws: Summary of Kepler's Laws
Summary of Kepler's Laws
The first law states that the shape of each planet's orbit is an ellipse with the sun at one focus. The sun is thus off-center in the ellipse and the planet's distance from the sun varies as the planet moves through one orbit. The second law specifies quantitatively how the speed of a planet increases as its distance from the sun decreases. If an imaginary line is drawn from the sun to the planet, the line will sweep out areas in space that are shaped like pie slices. The second law states that the area swept out in equal periods of time is the same at all points in the orbit. When the planet is far from the sun and moving slowly, the pie slice will be long and narrow; when the planet is near the sun and moving fast, the pie slice will be short and fat. The third law establishes a relation between the average distance of the planet from the sun (the semimajor axis of the ellipse) and the time to complete one revolution around the sun (the period): the ratio of the cube of the semimajor axis to the square of the period is the same for all the planets including the earth.
Sections in this article:
- Introduction
- Kepler's Foretelling of the Law of Gravity
- Development of Kepler's Laws
- Summary of Kepler's Laws
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General