solar system: Contemporary Theories
Contemporary Theories
Contemporary theories return to a form of the nebular hypothesis to explain the transfer of momentum from the central mass to the outer material. The nebula is seen as a dense nucleus, or protosun, surrounded by a thin shell of gaseous matter extending to the edges of the solar system. According to the theory of the protoplanets proposed by Gerard P. Kuiper, the nebula ceased to rotate uniformly and, under the influence of turbulence and tidal action, broke into whirlpools of gas, called protoplanets, within the rotating mass. In time the protoplanets condensed to form the planets. Although Kuiper's theory allows for the distribution of angular momentum, it does not explain adequately the chemical and physical differences of the planets.
Using a chemical approach, H. C. Urey has given evidence that the terrestrial planets were formed at low temperatures, less than 2,200℉ (1,200℃). He proposed that the temperatures were high enough to drive off most of the lighter substances, e.g., hydrogen and helium, but low enough to allow for the condensation of heavier substances, e.g., iron and silica, into solid particles, or planetesimals. Eventually, the planetesimals pulled together into protoplanets, the temperature increased, and the metals formed a molten core. At the distances of the Jovian planets the methane, water, and ammonia were frozen, preventing the earthy materials from condensing into small solids and resulting in the different composition of these planets and their great size and low density.
The discovery of extrasolar planetary systems, beginning with 51 Pegasi in 1995 and now numbering in the hundreds, have given planetary scientists pause. Because it was the only one known, all models of planetary systems were based on the characteristics of the solar system—several small planets close to the star, several large planets at greater distances, and nearly circular planetary orbits. However, all of the extrasolar planets are large, many much larger than Jupiter, the largest of the solar planets; many orbit their star at distances less than that of Mercury, the solar planet closest to the sun; and many have highly elliptical orbits. All of this has caused planetary scientists to revisit the contemporary theories of planetary formation.
Sections in this article:
- Introduction
- Contemporary Theories
- The Planetesimal and Tidal Theories
- The Nebular Hypothesis
- Origin of the Solar System
- Physical Properties
- Planetary Motion
- The Planets
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General