automobile: Automobiles and the Environment

Automobiles and the Environment

Pollutants derived from automobile operation have begun to pose environmental problems of considerable magnitude. It has been calculated, for example, that 70% of the carbon monoxide, 45% of the nitrogen oxides, and 34% of the hydrocarbon pollution in the United States can be traced directly to automobile exhausts (see air pollution). In addition, rubber (which wears away from tires), motor oil, brake fluid, and other substances accumulate on roadways and are washed into streams, with effects nearly as serious as those of untreated sewage. A problem also exists in disposing of the automobiles themselves when they are no longer operable.

In an effort to improve the situation, the U.S. government has enacted regulations on the use of the constituents of automobile exhaust gas that are known to cause air pollution. These constituents fall roughly into three categories: hydrocarbons that pass through the engine unburned and escape from the crankcase; carbon monoxide, also a product of incomplete combustion; and nitrogen oxides, which are formed when nitrogen and oxygen are in contact at high temperatures. Besides their own toxic character, hydrocarbons and nitrogen oxides undergo reactions in the presence of sunlight to form noxious smog. Carbon monoxide and hydrocarbons are rather easily controlled by the use of high combustion temperatures, leaner fuel mixtures, and lower compression ratios in engines. Unfortunately, the conditions that produce minimum emission of hydrocarbons tend to raise emission of nitrogen oxides. To some extent this difficulty is solved by adding recycled exhaust gas to the fuel mixture, thus avoiding the oversupply of oxygen that favors formation of nitrogen oxides.

The introduction of catalytic converters in the exhaust system has provided a technique for safely burning off hydrocarbon and carbon-monoxide emissions. The fragility of the catalysts used in these systems required the elimination of lead compounds previously used in gasoline to prevent engine knock. California, which has the most stringent air-pollution laws in the United States, requires further special compounding of gasoline to control emissions, and several states have mandated that ethanol be mixed with gasoline; as with the elimination of lead, measures taken to control air pollution have a negative impact on fuel efficiency. In 2009 the United States adopted more stringent mileage and emission standards (effective in 2012 and based on California's standards), which were designed to produce the first significant increases in vehicle efficiency and decreases in vehicle pollution since the mid-1980s. By the mid-2010s concerns about automobile pollution and global warming had led a number of foreign countries to ban the sale of gasoline- and diesel-powered cars and vans sometime before mid-century.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Technology: Terms and Concepts